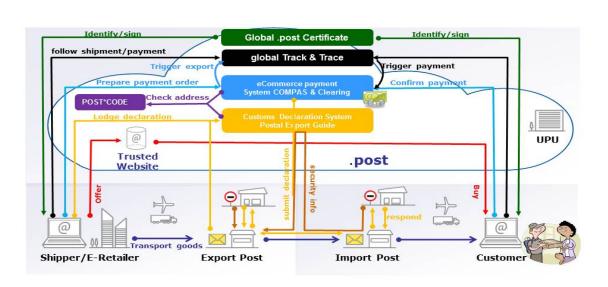


A short-run analysis of exchange rates and international trade

José Ansón (Universal Postal Union) Mauro Boffa (University of Geneva) Matthias Helble (Asian Development Bank Institute)

Global postal connectedness

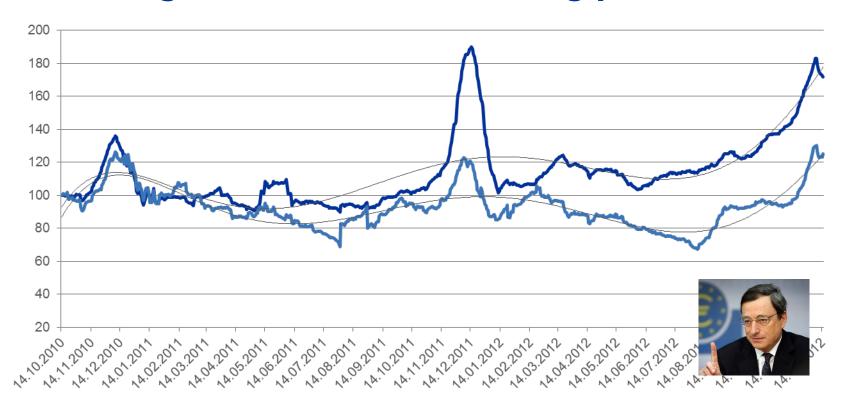
Big postal data and international exchanges


Datafication process: high frequency...

- International exchanges: up to every minute
- A real time exchange matrix of 17,891,424,000 annual observations at the country level only...
- ... reaching 8.4 septillion at the address level

Datafication process: high granularity

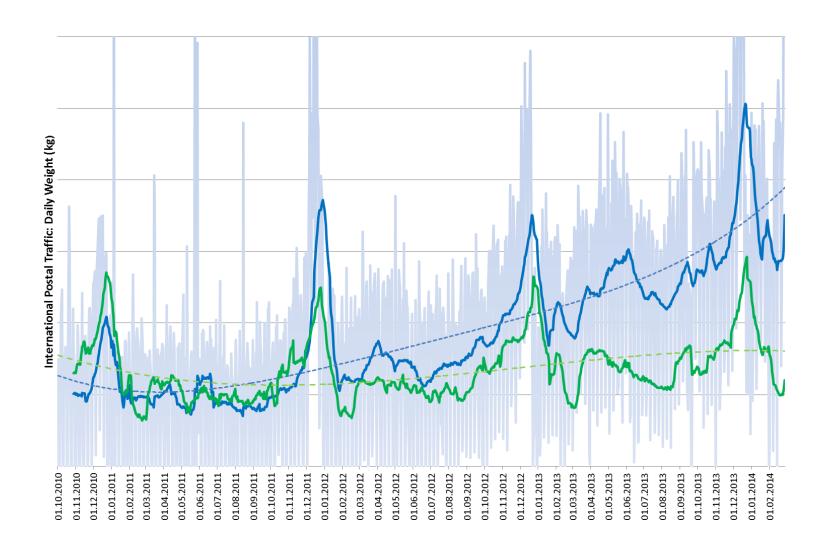
- Up to sender/receiver level, up to HS-6 code
- Track-and-trace <=> up to full path from sender to receiver
- Monitoring of millions of interoperable postal routes



E-COMMERCE & SUPPLY CHAIN INTEGRATION

STANDARDS

The real signal and the noise in big postal data...



- —GLOBAL INTERNATIONAL POSTAL EXCHANGES IN WEIGHT (DOC, PACKETS)
- ——INTERNATIONAL POSTAL EXCHANGES IN WEIGHT (DOC, PACKETS) FOR EUROPEAN COUNTRIES HIT BY SOVEREIGN DEBT CRISES
- —— Poly. (GLOBAL INTERNATIONAL POSTAL EXCHANGES IN WEIGHT (DOC, PACKETS))

Big postal data and international trade data patterns

V				_		y=3	
Dep. Variable	. Variable Exports top 50% HS			Exports top 50% HS2	Exports top 75% HS2	Exports top 75% H	Exports S2 top 75% HS
log parcels dispatched	· · · · · · · · · · · · · · · · · · ·			0.710	0.898	0.024	0.655
D^2	$(0.013)^{***}$			(0.020)***	(0.011)***	(0.005)***	(0.018)***
R^2	0.345	0.34		0.675	0.395	0.395	0.725
Importer-time FE	NO	NO		YES	NO	NO	YES
Exporter-time FE	NO	NO		YES	NO	NO	YES
Importer-Exporter FE	NO	YES	}	VO	NO	YES	NO
Variable		Offlin	e Onlir	ne Onlin	e Online	Letter-	Parcel-
			Intra-E	U Googl	e Ebay	Post	Post
					Í	(Weight)	(Items)
Distance		**-1.30	**-0.4	¥*-0 . 5	7 **-0.3 8	**-0.54	**-0.41
No common	legal sys.		-	- 0.0	3 **-0.30	-0.07	-0.14
No colony			-	- **-0.5	1 0.15	**-0.43	-0.11
No common language		*-0.18	**-1.54	¥*-1.2	0 **-0.48	**-0.26	**-0.69
No common border			-	- **-0.8	1 -0.15	0.08	**-0.86
No regional	trade agr.		-	- **-0.6	**-0.16	**-0.11	**-0.24
No common	currency		-	- 0.0	3 -	*-0.27	**-0.77

Daily big postal data and exchanges volatility

International arbitrage: econometric model

Pooled Mean Group (PMG) estimator (Pesaran et al., 1999)

Vector error correction model for panel data:

- Short-run coefficients and error differ across groups
- Long-run coefficient constrained to be identical

$$\Delta \ln EXP_{ij} = (\xi(\theta)_{ij})\phi_{ij} + \sum_{s=1}^{p} \Delta \ln EXP_{ij,-p}\lambda_{ijp} + \sum_{s=1}^{p} \Delta \ln FX_{ij,-p}\delta_{ijp} + u_{ij}\iota_{T} + \epsilon_{ij}$$
$$\xi(\theta)_{ij} = \ln EXP_{ij,-1} - \theta \ln FX_{ij,-1} \quad ij = 1, \dots, N; t = 1, \dots, T$$

 $\Delta \ln EXP_{ij}$ Percentage increase of parcels dispatched from i to j $\ln FX_{ij}$ Exchange rate between i and j $\Delta \ln EXP_{ij,-p}$ and $\Delta \ln FX_{ij,-p}$ Lags of parcel dispatches and exchange

rate between i and j

International arbitrage: empirical evidence

Dependent variable	PMG	PMG	PMG	PMG				
$\Delta \ln EXP$	Estimates	Estimates	Estimates	Estimates				
Equilibrium relationship								
$l. \ln FX$				-0.494				
	(0.092)***	(0.102)***	(0.104)***	(0.105)***				
Short-run dynamics (Averaged)								
$l.\Delta \ln FX$	2.601	1.407	1.111	-0.864				
	(6.706)	(3.465)	(1.466)	(4.433)				
$l2.\Delta \ln FX$		1.614	-0.721	-6.050				
		(1.238)	(1.674)	(4.539)				
$l3.\Delta \ln FX$		1.00	0.873	-0.412				
			(1.844)	(3.773)				
$l4.\Delta \ln FX$				-3.477				
				2.638				
$l.\Delta \ln EXP$	-0.044	-0.127	-0.045	0.270				
	(0.095)	(0.048)***	(0.037)	(0.082)***				
$l2.\Delta \ln EXP$	-	-0.030	-0.032	0.208				
		(0.030)	(0.033)	(0.110)*				
$l3.\Delta \ln EXP$		250	0.003	0.167				
			(0.022)	(0.059)***				
$l4.\Delta \ln EXP$				0.204				
				(0.075)***				
Error correction	-0.779		-0.762	-1.049				
	(0.088)***	(0.044)***	(0.033)***	(0.086)***				
Constant	1.233	1.427	1.615	2.065				
	(0.124)***	(0.164)	(0.138)***	(0.214)***				
Number of observations	326630	326630	326630	326630				

Standard errors in parenthesis clustered by corridor

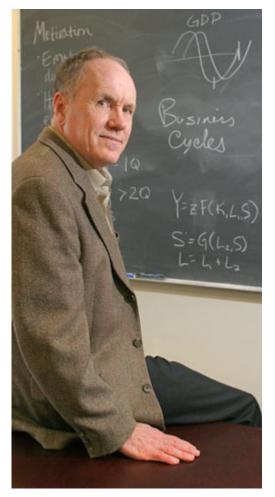
So what for central bankers?

- Consistent with domestic retail prices (offline prices) stickiness in the shortrun
- Consistent with nominal exchange rate movements not impacting domestic sales prices (Burstein and Gopinath, 2013): low exchange rate pass-through in the short to medium run
- Consistent with short-run expected impacts of competitive devaluations

Value of big postal data for them?

- Rising predictive power of international postal networks providing alternative macroeconomic insights for policy makers in real-time
- Possibility of monitoring key macroeconomic and monetary policy parameters in real time leading to more timely choices

Big postal data and the value of understanding the very short-run economic dynamics


Understanding the very short-run economic dynamics is critical for central bankers

and other economic policy makers in times of economic uncertainty

- Cheaper alternative big data and statistics sources could provide key insights
- Could big postal data become one of the most valuable ones for you?

"Postal economics might be more central to understanding the economy than monetary economics"

Edward Prescott, 1980

